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HEAT AND MASS EXCHANGE IN FILMS
OF A REACTING MIXTURE AND A COOLING
LIQUID UNDER EXOTHERMIC-REACTION CONDITIONS
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Conjugate turbulent heat and mass exchange in fast exothermic reactions in thin films has been investigated
with allowance for the change in the pressure. A modification of the equal-flow-rate method, the most natural
for problems of such a kind, has been constructed. Its distinctive feature is that it is constructed on formal
passage to a rectangular domain of variation in variables. The modification obtained has been tested on the
problem solved earlier by the well-known equal-flow-rate method. Despite the fact that the proposed mathe-
matical model and the procedure of its investigation enjoy rather wide application, in the present work, it is
oriented toward the cationic liquid-phase polymerization of isobutylene. The local concentration distributions
of the monomer and the catalyst and the temperature distributions have been obtained in numerical investiga-
tions. The reaction and cooling zones have been singled out; it has been recorded that the process of the
most active chemical transformation is localized by the narrow zone of entry into the film.

Introduction. Growing interest in nanotechnologies, enabling us, among other things, to directly control the
process of production of new materials at a nanoscale level inaccessible before, makes us use another approach to
many chemical-engineering processes that are based on a complex set of transformations in multicomponent multiphase
systems.

In this connection, film-type flow reactors (initially based on the principle of organization of reaction proc-
esses in a thin film of a substance, particularly in the turbulent flow regime where the structure of the free surface of
a liquid film has a nanoscale) deserve special attention for liquid-gas-phase processes. The development of such reac-
tors is accompanied by solution of numerous difficult fundamental chemical-engineering problems belonging to both
the chemistry and physics of transformations and the nonlinear fields of hydrodynamics and heat and mass transfer in
multicomponent multiphase processes [1].

Below, we investigate a mathematical model of a film-type flow reactor in which thin films of a reacting liq-
uid and of that cooling it freely flow, under gravity, down a vertical wall separating them. Selection of the parametric
region in the numerical investigation carried out is oriented toward fast highly exothermic transformation processes,
such as cationic liquid-phase polymerization of isobutylene [2].

Formulation of the Problem. Consideration is given to a two-dimensional model of two films of liquids
freely flowing down, under gravity and at atmospheric pressure, on both sides of a thin (negligible) heat-conducting
barrier. One film is a reacting mixture, and the other is cooling water.

Let us direct the Ox axis along the motion of the films (collinearly to the gravity action) and the Oy axis or-
thogonally to the barrier separating the films. According to [2], the distributions of the components as a consequence
of the reaction in a moving mixture film, in the reactor of length L, can be described by the equations

Journal of Engineering Physics and Thermophysics, Vol. 81, No. 3, 2008

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region,
142432, Russia; email: kholp@icp.ac.ru and zakievs@icp.ac.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol.
81, No. 3, pp. 450–463, May–June, 2008. Original article submitted November 2, 2006.

1062-0125/08/8103-04732008 Springer Science+Business Media, Inc. 473



∂Ca

∂t
 + W1 

∂Ca

∂x
 + W2 

∂Ca

∂y
 = div (Da grad (Ca)) − KaCaCb exp 




− 

Ea

RTc




 , (1)

∂Cb

∂t
 + W1 

∂Cb

∂x
 + W2 

∂Cb

∂y
 = div (Db grad (Cb)) − KbCb exp 




− 

Eb

RTc




 ,   0 ≤ x ≤ L ,   0 ≤ y . (2)

The thermal regime in the film of the reacting mixture is described with allowance for the thermal effect
due to the transformations in it and for the motion of the film. It is believed that the heat capacities and thermal
conductivities of both the reacting mixture and the water cooling it undergo no substantial changes in all stages of
the process:
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At the boundary y = 0 (barrier down which the film flow), we select conjugation conditions (3) and (4) in the form
of the equality of the temperatures and temperature fluxes
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Formulas (5) characterize the conjugation and adhesion conditions.
Next, it is assumed that the total density of the mixture, which includes the starting components and the cata-

lyst and the intermediate and end product, remains constant throughout the process; furthermore, the mixture is as-
sumed to be incompressible. An analogous assumptions is made for the cooling water film, which is in good
agreement with experimental data [1].

For analysis of the fundamental pattern of operation of a film-type reactor the case of the stationary (steady-
state) motion of films is of prime interest (this case is considered in the present work). This motion is described
within the framework of the general approach presented in [1]:

for the reacting mixture
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(6)

for the aqueous film
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Here the function yk = h(xk) with a corresponding subscript describes the free film surface, and the a priori known
quantity S (called the flow rate) remains constant within the framework of the stationary process by virtue of the as-
sumptions made above. Also, it is assumed that the gas contacting the free surface of the reacting-mixture film exerts
no pronounced influence on the transformation processes in it [2].

According to experimental data [2], the influence of heat release of the chemical nature under the condi-
tions of stationary motion of films on the character of their motion can be disregarded. In so doing, we can con-
sider the hydrodynamic part of the mathematical model of a film-type reactor irrespective of its thermochemical
part. At the same time, an analysis of this part cannot be made in total isolation from the hydrodynamic aspects.
All this has determined the numerical analysis of this model in two steps: in the first step, we investigated the hy-
drodynamics of the flow-type reactor, in the second, we studied chemical transformations under the conditions of
the precomputed hydrodynamic pattern. Moreover, this approach has enabled us to test a new modification of the
equal-flow-rate method, specially constructed for simultaneous treatment of both problems, which we plan to carry
out in subsequent investigations.

Hydrodynamic Part of the Model. The aforesaid and the fact that the film flows in one direction on both
sides of the fixed diffusion-impermeable (but heat-conducting) wall enables us to reduce the model’s hydrodynamic
part to solution of one and the same system of equations but with different values of the parameters.

The system of equations thus obtained is classical for film flow theory and has been investigated, together
with its numerous modifications, in [1]. However, this work did not seek to coordinate (much less to simultaneously
perform) hydrodynamic calculations with a two-dimensional numerical analysis of exothermic chemical transformations
in moving films. Among the difficulties arising in this path, of particular importance is the spatial domain which is
occupied by the reacting film and is the integration domain of the thermochemical problem. The most optimum for the
latter is the variable-direction method whose application requires a rectangular domain of determination of variables.
This section is devoted to overcoming this obstacle by passage to the corresponding new variables.

The hydrodynamics of stationary film flow of the reacting mixture and water can formally be described using
the system
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The character of representation of viscosity as the sum of two components — kinetic and turbulent ones — is selected
in accordance with [1] (where the argument and corresponding references have been given):
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2
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
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 , (9)
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The right-hand side of (9) points to the most natural substitution of coordinates which reduces the do-
main of functions of the system transformed to a rectangle. Let us represent the unknown function h(x) as h(x) =
h0 exp (v(x ⁄ ∆x)), where ∆x is a certain scale of xk which will be determined below. Then the selected substitution
of coordinates can be written in the form
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x
k

∆x

y = 2 
y
k

h (x~)
 − 1













 ] 

∂
∂x~

 = 
1
∆x

 




∂
∂x

 − (1 + y) ∂v

∂x
 
∂
∂y





∂
∂y~

 = 
2

h0 exp (v (x))
 
∂
∂y













 . (10)

This substitution corresponds to the expression of the new velocity vector w = (w1, w2) by the previous U:
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In addition to this substitution of variables, we carry out the substitution of unknowns w = (w1, w2):

w1 = exp (− v (x)) u1

w2 = exp (− v (x)) u2
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It is noteworthy that, on the substitution of variables (10), equality (9) takes the form

σc
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turb

 = − σ1y
2
 + σ1 + σ0 = σ0 (− σy

2
 + σ + 1) . (13)

Substituting the right-hand sides of (10) and (12) into the first equation of (8), we obtain

div (u) = 0 . (14)

The second equation of (8) in new variables acquires the form
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The third equation of (8) in new variables takes the form
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Turbulent film flow is known to classically be [3] described within the framework of the Prandtl approxima-
tion of Navier–Stokes equations (second and third equations in system (8)). For Eqs. (15) and (16) we also use an
analog of this procedure by recognizing that ∆x is selected orders of magnitude larger than the initial film thickness h0;
therefore, it may be considered that

h0
2

(∆x)2
 C 0 . (17)
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With account for (17), the asymptotic approximation of (15) will have the form
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Let us represent the dimensional unknown functions as the sum of the dimensional constant and the dimen-
sionless function:

∆x = L ,   u1 = 
U0

∆x
 u~1 ,   u2 = 

U0

∆x
 u~2 ,   p = ρU0

2
p~ ,   G = 

g∆x

U0
2

(19)

(~  points to the dimensionless character of the function), previously dividing the two sides of it by U0
 ⁄ ∆x:




u~1 

∂u~1

∂x
 + u~2 

∂u~1

∂y
 − u~1

2
 
∂v

∂x




 exp (− 2v) = − 

∂p~

∂x
 + (y + 1) 

dv

dx
 
∂p~

∂x
 + G

+ 
σ0 (1 + σ − σy

2)

∆xU0

 exp (− v) 
∂2

u~1

∂x
2  − 

2σ0 (1 + σ − σy
2)

∆xU0

 exp (− v) (1 + y) 
dv

dx
 
∂2

u~1

∂y∂x

+ 
4σ0 (1 + σ − σy

2) ∆x

h0
2
U0 exp (3v)

 
∂2

u~1

∂y
2

 − 
2σ0 (1 + σ − σy − 2σy

2)

∆xU0

 
dv

dx
 exp (− v) 

∂u~1

∂x
 − 

σ0∆x8σy

h0
2
U0 exp (3v)

 
∂u~1

∂y

+ 
σ0

∆xU0

 exp (− v) 



(1 + σ − 2σy − 3σy

2) 




dv

dx





2

 + (1 + σ − σy
2) 

d
2
v

dx
2




 u~1 .

(20)

We remove the common factor from all the terms containing derivatives of u~1:
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
 .

Then, in accordance with (17), we have

u~1 
∂u~1

∂x
 + u~2 

∂u~1

∂y
 − u~1

2
 
dv

dx
 = − exp (− 2v) 

∂p~

∂x
 + (y + 1) exp (2v) 

dv

dx
 
∂p~

∂x
 + G exp (2v)

+ 4 




σ0

h0U0




 




∆x

h0




 exp (− v) 




(1 + σ − σy

2) 
∂2

u~1

∂y
2

 − 2σy 
∂u~1

∂y




 . (21)

By analogy with (16), we obtain

(1 + y) 
dv

dx
 



u~1 

∂u~1

∂x
 + u~2 

∂u~1

∂y




 + u~1 

∂u~2

∂x
 + u~2 

∂u~2

∂y
 + (1 + y) 

d
2
v

dx
2 u~1

2
 + u~1u~2 

dv

dx
 = − 

4 (∆x)2

h0
2

 
∂p~

∂y

+ 4 




σ0

h0U0




 
∆x

h0

 



exp (− v) (1 + σ − σy

2) (1 + y) 
dv

dx
 
∂2

u~1

∂y
2

 + exp (− v) (1 + σ − σy
2) 

∂2
u~2

∂y
2

+ 4 exp (v) (1 + σ − σy − 2σy
2) 

dv

dx
 
∂u~1

∂y
 − 2σy exp (v) 

∂u~2

∂y
 + 2yσ exp (− v) 

dv

dx
 u~1




 . (22)

Using condition (17), just as in the classical case (dividing both sides by (∆x)2 ⁄ h0
2), we can reduce Eq. (22)

to the equation

∂p~

∂y
 (x, y) = 0 ,   0 ≤ x ≤ 

L
∆x

 = l ,   − 1 < y < 1 , (23)

thus considering that p~ is dependent only on the variable x. The available feature is noteworthy. Generally speaking,
the asymptotic approximation (23) of Eq. (22) holds only within −1 < y < 1. If, as a boundary condition, we take (as
is assumed)

∂p
∂y

 (x
k

, h (x
k

)) = 0 ,   0 ≤ x
k

 ≤ L ,

whence, on the basis of (10), we have

∂p~

∂y
 (x, 1) = 0 ,   0 ≤ x ≤ l ,

(24)

then, at the boundary y = 1, we should consider

2 
dv

dx
 



u~1 

∂u~1

∂x
 + u~2 

∂u~1

∂y




 + u~1 

∂u~2

∂x
 + u~2 

∂u~2

∂y
 + 2 

d
2
v

dx
2
 u~1

2
 + u~1u~2 

dv

dx
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= 4 




σ0

h0U0




 
∆x

h0

 



exp (− v) 2 

dv

dx
 
∂2

u~1

∂y
2  + exp (− v) 

∂2
u~2

∂y
2  + 4 (1 − 2σ) exp (v) 

dv

dx
 
∂u~1

∂y

− 2σ exp (v) 
∂u~2

∂y
 + 2σ exp (− v) 

dv

dx
 u~1





(25)

instead of (23). Since this equation is considered on the vanishing region of the boundary y = 1 which is a streamline,
we may disregard the terms containing ∂2u~1

 ⁄ ∂y2 and ∂2u~2
 ⁄ ∂y2 in it.

Noting that the relation between the numbers

Re0 = 
h0U0

σ0
   and   

∆x

h0

(26)

is quite substantial in investigating system (14), (21), and (25), we introduce the constant

χ = logRe0
 




∆x
h0




 . (27)

Then the dimensionless system under study can be written in the form

∂u~1

∂x
 + 

∂u~2

∂y
 = 0 , (28)

u~1 
∂u~1

∂x
 + u~2 

∂u~1

∂y
 − u~1

2
 
dv

dx
 = − exp (2v) 

dp~

dx
 + G exp (2v)

+ 4Re0
χ−1

 exp (− v) 



(1 + σ − σy

2) 
∂2

u~1

∂y
2  − 2σy 

∂u~1

∂y




 ,   0 ≤ x ≤ l ,   − 1 ≤ y ≤ 1 ; (29)

2Re0
1−χ

 
dv

dx
 



u~1 

∂u~1

∂x
 + u~2 

∂u~1

∂y




 + Re0

1−χ
 u~1 

∂u~2

∂x
 + Re0

1−χ
 u~2 

∂u~2

∂y

+ 2Re0
1−χ

 
d

2
v

dx
2 u~1

2
 + Re0

1−χ
 u~1u~2 

dv

dx
 = 16 (1 − 2σ) exp (v) 

dv

dx
 
∂u~1

∂y
 + 8σ exp (v) 

∂u~1

∂x

+ 8σ exp (− v) 
dv

dx
 u~1 ,   0 ≤ x ≤ l ,   y = 1 .

(30)

Let us pass on to the method of solution of this system with the adhesion condition at the boundary with a
solid wall:

u1 = 0 ,   u2 = 0 ,   0 ≤ x ≤ l ,   y = 0 . (31)

For this purpose we show that passage to the new variables and unknowns (10)–(12) enables us to preserve the entire
formal part of the method of equal-flow-rate surfaces [1]. It is based on the assumption that, in a plane stationary film
flow described in coordinates (x, y), we can single out the series of streamlines pyk = ykk(x

k)qk=0
N , i.e., the lines on

which we have the equality
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U2 (x
k

, y
k

k (x
k)) = 

dy
k

k (x
k)

dx~
 U1 (x

k

, y
k

k (x
k)) ,

(32)

dividing the entire flow into the subflows (between two neighboring lines of the series) in which the flow rate of the
liquid per unit time remains the same (i.e., independent of xk) for any cross section xk B const:

    ∫ 
y
k

k(x
k

)

y
k

k+1(x
k

)

  U1 (x
k

, s) ds B const  ̂    
d
dx~

    ∫ 
y
k

k(x
k

)

y
k

k+1(x
k)

  U1 (x
k

, s) ds = 0 .
(33)

Curves into which the series pyk = ykk(x
k)qk=0

N  goes over on substitution of variables (10) have the form




yk = 

2
h0

 y
k

k (x∆x) exp (− v (x)) − 1


k=0

N

 .

For this series, in accordance with (11), equality (32) will become the relation

1 + yk

2
 exp (v) 

dv

dx
 w1 + 

exp (v)
2

 w2 = 
d

dx
 




(1 + yk)
2

 exp (v)



 w1  ̂    w2 

dyk

dx
 w1 ,

which, according to (12), is equivalent to the equality

u~2 = 
dyk

dx
 u~1 .

(34)

Expression (33) entirely retains its formal form on passage to the new variables and unknowns (10)–(12). Indeed, since

    ∫ 
y
k

k(x
k

)

y
k

k+1(x
k

)

  U1 (x
k

, y
k

) dy
k

 =   ∫ 
yk(x)

yk+1(x)

  ∆x exp (− v (x)) u1 (x, y) 
h0

2
 exp (v (x)) dy = 

U0h0

2
   ∫ 
yk(x)

yk+1(x)

  u~1 (x, y) dy = const ,

we have

d
dx

   ∫ 
yk(x)

yk+1(x)

  u~1 (x, y) dy = 0 .
(35)

Following the method of equal-flow-rate surfaces, we compose a system of 2(N − 1) equations, preintroducing
the notation u1,k(x) = u1(x, yk(x)):

4 (σ (1 − y
2) + 1) 

∂2
u~1

∂yk
2

 (x, yk) − 8σy 
∂u~1

∂yk

 (x, yk) + Re0
1−χ

 exp (v) u~1,k
2

 
dv

dx

− Re0
1−χ

 exp (3v) 
dp~

dx
 + Re0

1−χ
 G exp (3v) = Re0

1−χ
 exp (v) u~1,k 

du~1,k

dx
 ; (36)
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dyk (x)
dx

 = 
dyk−1 (x)

dx
 − 

du~1,k (x)
dx

 + 
du~1,k−1 (x)

dx
u~1,k (x) + u~1,k−1 (x)

 (yk (x) − yk−1 (x)) ,   k = 1, 2, ..., N − 1 .

This system is open, since contains 2N unknowns. It is closed by addition of equations determined in a certain small
vicinity of the straight line y = 1. Continuing the first group of equations (36) and disregarding (just as in deriving
(25)) the term with ∂2u~1

 ⁄ ∂y2, we obtain

− 8σ 
∂u~1

∂yk
 (x, 1) + Re0

1−χ
 exp (v) u~1,N

2
 
dv

dx
 − Re0

1−χ
 exp (3v) 

dp~

dx
 + Re0

1−χ
 G exp (3v)

= Re0
1−χ

 exp (v) u~1,N 
du~1,N

dx
 . (37)

Equation (37) contains one more unknown u~1,N. Continuing the second group of equations and taking into account that
yN = 1 and dyN

 ⁄ dx = 0, we have

dyN−1 (x)
dx

1 − yN−1 (x)
 = 

du~1,N (x)
dx

 + 
du~1,N−1 (x)

dx
u~1,N (x) + u~1,N−1 (x)

 .

(38)

This equation is easily solved for u~1,N

u~1,N (x) = 




1 − yN−1 (0)
1 − yN−1 (x)




 u

~
1,N (0) + u~1,N−1 (0) − u~1,N−1 (x) . (39)

Finally, taking into account that

∂u1

∂yN
 (x, yN) = 

du1,N
dx

 (x) ,   u~2 (x, 1) = 
∂u~2

∂x
 (x, 1) = 0 ,   0 ≤ x ≤ l ,

we can write Eq. (30) in the form

8 (1 − 2σ) exp (v) 
dv

dx
 
∂u~1

∂y
 (x, 1) − Re0

1−χ
 
d

2
v

dx
2 u~1

2
 + 4σ exp (− v) 

dv

dx
 u~1

= Re0
1−χ

 u~1 − 4σ exp (− v) 
dv

dx
 
du~1

dx
 .

(40)

The three equations (37), (38) (or (39)), and (40) containing only one complementary unknown complete system (36)
to a closed system.

In closing this section, we note that the values ∆x = 2 m, h0 C 0.00086 m, and χ C 1.3228 have been taken
in the above calculations.

Thermophysical Part of the Model. We have indicated above a substitution of variables in Eqs. (1)–(4) such
that the domain of variation in spatial variables becomes a rectangle. However, for the model’s part in question, it is
better to take the equivalent modification of this substitution with a rectangular domain of variation in spatial vari-
ables, too,

x = x
k

 ,     y = 
y
k

h(x
k

)
 ,
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in accordance with which we have

W1 = w1 ,   W2 = y 
dh
dx~

 w1 + hw2 .

The relationship between wi and the u~i values computed above is trivial. Furthermore, with the aim of allow-
ing for the turbulent character of film motion in this part of the problem, too, we consider the case where

Da = Db = D (1 + TD (y − y
2)) ,   ac = ac0 (1 + TLc (y − y

2)) ,   aw = aw0 (1 + TLw (− y − y
2)) ,

where D, ac0, and aw0 are respectively the molecular diffusion and thermal diffusivities, and the constants TD and TL
are determined, in accordance with [1], as

TB = 0.0014 
ρ
ν

 Re
77 ⁄ 30

 g
1 ⁄ 3 (σkin)4

 ⁄ 3 ,   TD = TB 
σkin

D
 ,   TL = TB 

σkin

a
 .

In this part of the model, intermediate transformations are more simple than those in the previous part. Therefore, we
can drop them, passing over immediately to a dimensionless form. For this purpose we set

TR = T0 + 
QcCa0

ccρc
 ,   θ = 

T − T0

T0
 ,   θ0 = 

T0 − TR

TR
 ,   ∆a = 

RTR

Ea
 ,   ∆b = 

RTR

Eb
 ,

η = 
Ca

Ca0
 ,   ϕ = 

Cb

Ca0
 ,   ac = 

λc

ccρc
 ,   aw = 

λw

cwρw
 ,   ∆t = 

1

KaCa0
 exp 





1

∆a




 ,

∆x = √Da∆t  ,   ∆u = 
∆x
∆t

 ,   τ = 
t
∆t

 ,   ξ = 
x
∆x

 ,   l = 
L
∆x

 ,   fc = 
∆x
hc0

 ,

fw = 
∆x

hw0
 ,   za = 

TR − Tc0

TR
 ,   zb = Kb exp 




− 

1

∆b




 ∆t .

(41)

The model’s thermochemical part made dimensionless has the form

∂η

∂τ
 = H

0
 
∂2η

∂ξ2  + H
1
 
∂2η

∂y∂ξ
 + H

2
 
∂2η
∂y

2  + H
3
 
∂η

∂ξ
 + H

4
 
∂η

∂y
 − ηϕ exp 





θ
∆a (θ + 1)




 ,

∂ϕ

∂τ
 = H

0
 
∂2ϕ

∂ξ2  + H
1
 
∂2ϕ

∂y∂ξ
 + H

2
 
∂2ϕ
∂y

2  + H
3
 
∂ϕ

∂ξ
 + H

4
 
∂ϕ

∂y
 − zbϕ exp 





θ
∆b (θ + 1)




 ,   0 ≤ x ≤ l ,   0 ≤ y ≤ 1 ;

∂θ

∂τ
 = HT

0
 
∂2θ

∂ξ2
 + HT

1
 
∂2θ

∂y∂ξ
 + HT

2
 
∂2θ

∂y
2
 + HT

3
 
∂θ

∂ξ
 + HT

4
 
∂θ

∂y
 + zaηϕ exp 





θ
∆a (θ + 1)




 ,   0 ≤ x ≤ l ,   − 1 ≤ y ≤ 1 .

(42)

The smooth coefficients Hi (i = 0, 1, 2, 3, and 4) and piesewise-smooth (discontinuity of the first kind on the barrier
separating water and the reacting mixture) coefficients HT

i  (i = 0, 1, 2, 3, and 4) appearing in (42) are determined
from the formulas

r0 = 
D

D∗
 ,   r1 = 

D

D∗
 TD ,   rw0 = 

aw0

a∗
 ,   rw1 = 

aw0

a∗
 TLw ,   rc1 = 

ac0
a∗

 ,   rc1 = 
ac0

a∗
 TLc ;
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H
0
 = r0 + r1 (y − y

2) ;   H1
 = − 2y 

dvc

dξ
 H

0
 ;   H

2
 = 




y

2
 




dvc

dξ




2

 + fc
 2

 exp (− 2vc)



 H

0
 ;

H
3
 = − r1 (1 − 2y) y 

dvc

dξ
 − u1 ;

H
4
 = yH

0
 








dvc

dξ





2

 − 
d

2
vc

dξ2




 + r1 (1 − 2y) 




y

2
 




dvc

dξ





2

 + fc
 2

 exp (− 2vc)



 ;

HT
0
 = 











rw0 − rw1 (y − y
2) ,     − 1 ≤ y < 0 ,

rc0 + rc1 (y − y
2) ,          0 < y ≤ 1 ;

     HT
1
 = 











− 2y 
dvw

dξ
 rw0 − rw1 (y − y

2) ,     − 1 ≤ y < 0 ,

− 2y 
dvc

dξ
 rc0 + rc1 (y − y

2) ,          0 < y ≤ 1 ;

HT
2
 = 
















y

2
 




dvw

dξ




2

 + fw
 2

 exp (− 2vw)



 rw0 − rw1 (y − y

2) ,     − 1 ≤ y < 0 ;




y

2
 




dvc

dξ




2

 + fc
 2

 exp (− 2vc)



 rc0 + rc1 (y − y

2) ,          0 < y ≤ 1 ;

HT
3
 = 











rw1 (1 + 2y) y 
dvw

dξ
 − u1w ,     − 1 ≤ y < 0 ;

− rc1 (1 − 2y) y 
dvc

dξ
 − u1c ,     0 < y ≤ 1 ;

HT
4
 = 













y rw0 − rw1 (y − y
2) 









dvw

dξ





2

 − 
d

2
vw

dξ2




 − rw1 (1 + 2y) 




y

2
 




dvw

dξ





2

 + fw
 2

 exp (− 2vw)



 ,     − 1 ≤ y < 0 ;

y rc0 + rc1 (y − y
2) 









dvc

dξ





2

 − 
d

2
vc

dξ2




 + rc1 (1 − 2y) 




y

2
 




dvc

dξ





2

 + fc
 2

 exp (− 2vc)



 ,     0 < y ≤ 1 .

(43)

Numerical Investigation of the Model. Numerical calculation was carried out for the following values of the
constants: Ca0 = 1000 mole ⁄ m3, Cb0 = 10 mole ⁄ m3, ρa = 635 kg ⁄ m3, ρb = 1000 kg ⁄ m3, cc = 2174 J ⁄ (kg⋅K), cw =
4187 J ⁄ (kg⋅K), T0 = 293 K, R = 8 .3144 J ⁄ (mole⋅K), Ea = 12,560 J ⁄ mole, Eb = 16,747 J ⁄ mole, Ka =
2.95⋅104 m3 ⁄ (mole⋅sec), Kb = 3.37⋅105 m3 ⁄ (mole⋅sec), Qc = 5.400⋅104 J ⁄ mole, and aw = ac = a∗ = 0.025 m2 ⁄ sec.

First we calculated the motion of the films independently from the thermochemical problem. The calculation
results coincided with those obtained by another method [1]. The advantage of the procedure discussed is that it is
suitable for investigation of the hydrodynamics of a film-type reactor simultaneously with the thermochemical problem.

The thermochemical part of the model was investigated using the variable-direction method [4]. The sources
and the finite-difference analog of a mixed derivative were universally present for any time half-step on the right-hand

side. The leading part on the left-hand side was played by the finite-difference analogs of the operators H0 
∂2

∂ξ2 +

H3 
∂
∂ξ

 and H2 
∂2

∂y2
 + H4 

∂
∂y

 respectively denoted by Λξ and Λy and alternately replacing one another. The action of the

first operator on the grid function ψi,j, where the segment [0, 1] or [−1, 1] (variable y) is uniformly broken with a

step ∆y in i, and [0, l] (variable ξ) is broken with a step ∆ξ in j, has the form
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



Hi,j+1
3

2∆ξ
 + 

Hi,j
0

(∆ξ)2



 ψi,j+1 − 





2Hi,j
0

(∆ξ)2



 ψi,j + 





2Hi,j
0

(∆ξ)2
 − 

Hi,j−1

2∆ξ3




 ψi,j−1.

The action of the operator Λy is written as





Hi+1,j
4

2∆y




 ψi,j+1 − 





2Hi,j
2

(∆y)2



 ψi,j + 





Hi,j
2

(∆y)2
 − 

Hi−1,j

2∆y




 ψi−1,j. 

As the calculations have shown, the relations between the preexponents Ka and Kb are basic in this part of
the problem. The situation where Ka is an order of magnitude smaller than Kb is presented in Fig. 1. With the selected
values of the parameters, the temperature in the reaction zone grows by D50oC (Fig. 1). As follows from the same
plot of temperature in both films, the water film moving faster (because of its heavier weight) removes a substantial
part of heat from the reacting film. The plots of concentrations of the starting reagents (Fig. 2a) and the catalyst (ac-
tive sites [4]) (Fig. 2b) demonstrate that the model description selected and the parametric region place the active-re-
action zone in the beginning of the system; the system itself has a small width. As is demonstrated by calculations for
the considered parameters of the problem, the small thickness of the reacting film and the excess of the rate of chemi-
cal decrease in the catalyst over the velocity of film flow represent the necessary conditions under which the reaction
will occur mainly in the small vicinity of the reactor inlet. The relation of the rate of chemical decrease in the catalyst
and the velocity of film flow calls for additional experimental investigations.

Fig. 1. Temperature distribution in the reacting-mixture film–water film sys-
tem. T, K; xk, m.

Fig. 2. Distribution of the dimensionless concentration of the monomer (a) and
the catalyst (b) in the film of a reacting mixture. xk, m.
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Figure 3 shows, in combination, the distributions of the concentrations of the starting components and the
catalyst and of the temperature, averaged over y and normalized to their maximum values. It is precisely this figure
that enables us to gain a complete impression of the process. In particular, it follows from the figure that in the case
where the mixture begins to actively react at room temperature most of the reaction will occur at lower temperatures
than those at the system’s outlet. This fact for such mixtures essentially follows from the structural features of film-
type flow reactors with cooling. Despite the fact that fast exothermic reactions enjoy wide application in chemical en-
gineering, their kinetics has yet to be adequately studied.

This work was partially supported by the Russian Foundation for Basic Research, grant No. 06-08-01356.

NOTATION

a = λ ⁄ (cρ), thermal diffusivity of the mixture, m2 ⁄ sec; c, specific heat of the mixture, J ⁄ (kg⋅K); C, dimen-

sional concentration of the substance, mole ⁄ m3; D, diffusion coefficient, m2 ⁄ sec; E, activation energy of the reac-

tion, J ⁄ mole; f, dimensionless parameter; g, free-fall acceleration, 9.8 m ⁄ sec2; G = g∆x ⁄ U0
2, dimensionless constant;

h, thickness of the flowing-down film, m; H, dimensionless coefficient of system (42); K, kinetic reaction-rate con-

stant (for the monomer, m3 ⁄ (mole⋅sec); for the catalyst, 1 ⁄ sec); L, size of the entire system along the Ox axis (B

length of the entire system), m; l = L ⁄ (∆x), dimensionless length of the entire system; p, pressure, N ⁄ m2; p~, di-

mensionless pressure; Q, thermal effect of the reaction, J ⁄ mole; R, universal gas constant, J ⁄ (mole⋅K); Re0 =

h0U0
 ⁄ σ0, dimensionless constant; s, integration variable; S, flow rate in the flowing-film cross section, m2 ⁄ sec; t

k

,

time coordinate, sec; t, dimensionless time coordinate; T, temperature, K; TR, characteristic reaction temperature, K

(see (41)); TB = 0.0014
ρ
ν

 Re77 ⁄ 30g1 ⁄ 3(σkin)4 ⁄ 3, TD = TB 
σkin

D
, and TL = TB 

σkin

a
, constants; v = v(x) = ln 





h(x)
h0



 

,

logarithm of the thickness of the flowing-down film normalized to its (initial) thickness at entry into the system h0;

U = (U1, U2), film velocity in a unified representation of the hydrodynamic part of the problem, m ⁄ sec; u = (u1, u2),

film velocity in a unified representation of the hydrodynamic part of the problem on passage to new variables and un-

knowns, 1 ⁄ sec; (u~1, u~2), dimensionless film velocity in a unified representation of the hydrodynamic part of the prob-

lem on passage to new variables and unknowns; u1,k(x) = u1(x, yk(x)), series of unknown functions in problem (36);

U0, film velocity at entry into the system, m ⁄ sec; V = (V1, V2), velocity of flowdown of the water film, m ⁄ sec; W

= (W1, W2), velocity of flowdown of the reacting-mixture film, m ⁄ sec; w = (w1, w2), film velocity in a unified rep-

resentation of the hydrodynamic part of the problem on passage to new spatial variables, 1 ⁄ sec; (xk, yk), space coordi-

Fig. 3. Averaged (over y) distributions normalized to their maxima of the:
1) temperature; 2) concentration of the monomer, and 3) concentration of
the catalyst. xk, m.
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nates, m; (x, y), dimensionless space coordinates; 



yk = 

2
h0

 yk
k (x⋅∆x) exp (−v(x)) − 1



k=0

N

, series of streamlines of a uni-

fied system on passage to new variables and unknowns; pyk = ykk(x
k)qk=0

N , series of streamlines of the unified system

(8); z, dimensionless preexponent (see (41)); ∆a = RTR
 ⁄ Ea and ∆b = RTR

 ⁄ Eb, dimensionless parameters; ∆t = 
1

KaCa0

exp 


1
∆a



 

, characteristic reaction time of the volume element, sec; ∆x, scale of the hydrodynamic problem of x~ or spa-

tial scale of the thermal problem, equal to √Da∆t , m;  η, dimensionless concentration of the reagents; θ, dimensionless

temperature; λ, thermal conductivity of the mixture, J ⁄ (m⋅sec⋅K); ν, surface tension, N ⁄ m; ξ, dimensionless space co-

ordinate in the thermal part of the problem; ψij, arbitrary grid function; ρ, density, kg ⁄ m3; σ, viscosity, kg ⁄ (m⋅sec) or

the dimensionless constant σ1
 ⁄ σ0 (see (9)); τ, dimensionless time coordinate; ϕ, dimensionless concentration of the

catalyst; χ = logRe0
 




∆x
h0




, dimensionless parameter. Superscripts: kin and turb, molecular and turbulent components; 0,

1, 2, 3, and 4, number of the dimensionless coefficient in system (42). Subscripts; a, system of parameters of the start-
ing reagents; b, system of parameters of the catalyst; c, system of parameters of the total mixture; i, number of the
computational-grid node along the Oy axis; j, number of the computational-grid mode along the Oξ axis; k, number of
the streamline to which the parameter belongs; R, temperature constant (see (41)); T, belonging to the dimensionless
coefficients of the heat-conduction equation of system (42); w, water; 0, value of the characteristic at entry into the

reactor (i.e., at the point x~ = 0) (see (9) for σ, (26) for Re, and (43) for r)); 1 and 2, belonging to the space coordi-

nates along x or along y respectively (see (9) for σ and (43) for r); *, selected constant of rendering quantities dimen-
sionless.
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